Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study

نویسندگان

  • Dalin Tang
  • Zhongzhao Teng
  • Gador Canton
  • Thomas S Hatsukami
  • Li Dong
  • Xueying Huang
  • Chun Yuan
چکیده

BACKGROUND It is believed that mechanical stresses play an important role in atherosclerotic plaque rupture process and may be used for better plaque vulnerability assessment and rupture risk predictions. Image-based plaque models have been introduced in recent years to perform mechanical stress analysis and identify critical stress indicators which may be linked to rupture risk. However, large-scale studies based on in vivo patient data combining mechanical stress analysis, plaque morphology and composition for carotid plaque vulnerability assessment are lacking in the current literature. METHODS 206 slices of in vivo magnetic resonance image (MRI) of carotid atherosclerotic plaques from 20 patients (age: 49-71, mean: 67.4; all male) were acquired for model construction. Modified Mooney-Rivlin models were used for vessel wall and all plaque components with parameter values chosen to match available data. A morphological plaque severity index (MPSI) was introduced based on in vivo plaque morphological characteristics known to correlate with plaque vulnerability. Critical stress, defined as the maximum of maximum- principal-stress (Stress-P1) values from all possible vulnerable sites, was determined for each slice for analysis. A computational plaque stress index (CPSI, with 5 grades 0-4, 4 being most vulnerable) was defined for each slice using its critical stress value and stress interval for each CPSI grade was optimized to reach best agreement with MPSI. Correlations between CPSI and MPSI, plaque cap thickness, and lipid core size were analyzed. RESULTS Critical stress values correlated positively with lipid core size (r = 0.3879) and negatively with cap thickness (r = -0.3953). CPSI classifications had 71.4% agreement with MPSI classifications. The Pearson correlation coefficient between CPSI and MPSI was 0.849 (p < 0.0001). Using global maximum Stress-P1 value for each slice to define a global maximum stress-based CPSI (G-CPSI), the agreement rate with MPSI was only 34.0%. The Pearson correlation coefficient between G-CPSI and MPSI was 0.209. CONCLUSION Results from this in vivo study demonstrated that localized critical stress values had much better correlation with plaque morphological features known to be linked to plaque rupture risk, compared to global maximum stress conditions. Critical stress indicators have the potential to improve image-based screening and plaque vulnerability assessment schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations with Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-patient Study

Plaque vulnerability, defined as the likelihood that a plaque would rupture, is difficult to quantify due to lack of in vivo plaque rupture data. Morphological and stress-based plaque vulnerability indices were introduced as alternatives to obtain quantitative vulnerability assessment. Correlations between these indices and key plaque features were investigated. In vivo intravascular ultrasound...

متن کامل

Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study.

BACKGROUND AND PURPOSE It has been hypothesized that high structural stress in atherosclerotic plaques at critical sites may contribute to plaque disruption. To test that hypothesis, 3D fluid-structure interaction models were constructed based on in vivo MRI data of human atherosclerotic carotid plaques to assess structural stress behaviors of plaques with and without rupture. METHODS In vivo...

متن کامل

3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.

Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assess...

متن کامل

IVUS-based computational modeling and planar biaxial artery material properties for human coronary plaque vulnerability assessment.

Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better plaque assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. A framework is proposed to combi...

متن کامل

Plaque geometry: determinant for fibrous cap stress levels

Introduction In clinical practice, the risk of cerebrovascular events originating from carotid atherosclerotic plaques is correlated to the degree of luminal narrowing, commonly designated the degree of stenosis. Though the degree of stenosis is a proven marker of plaque vulnerability, it is widely recognized that better risk markers for cerebrovascular events are needed. Known morphological fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioMedical Engineering OnLine

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2009